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A series of calculations have been carried out for the linear symmetric H 3 molecule using 
configuration interaction wavefunctions constructed from a mixed set of ls Slater and floating 
spherical Gaussian functions. The results, although they do not surpass the best CI results reported in 
the literature, are sufficiently good to encourage further work along these lines. 

Es wurde eine Reihe yon Rechnungen ftir das lineare, symmetrische H3-MolekiJl durchgef'tihrt, bei 
denen Wellenfunktionen mit Konfigurations-Wechselwirkung verwendet werden, die aus einem 
gemischten Satz yon ls Slater- und "floating" sphiirischen GauB-Funktionen konstruiert wurden. 
Obwohl die Resultate die besten CI Ergebnisse, iiber die in der Literatur berichtet wird, nicht 
iibertreffen, sind sie so gut, dab sie zu weiterer Arbeit nach dieser Methode ermutigen. 

Introduction 

H 3 is a system of considerable interests to chemists since it is the activated 
complex of the exchange reaction 

H + H 2 ~ H 2 + H ,  

which is the simplest chemical reaction involving a transition state and as such it 
ought to be the easiest to investigate theoretically. 

Experimental estimates of the activation energy, defined as the energy 
difference between H 3 and H 2 + H, range between 7 and 10kcal/mole. The 
recent kinetic experiments of Le Roy and co-workers [1] point to an activation 
energy of 9.2 kcal/mole, whereas the more direct measurements of Kupper-  
mann and White I-2.] yield a value of 7.6 + 0.5 kcal/mole. One of the main diffi- 
culties associated with the experimental determination of the classical barrier 
height is the effect of quantum mechanical tunnelling, making the relationship 
of barrier height to experimental activation energy very complex. In this paper 
the term activation energy will be used to mean the classical barrier height. 

The first ab initio calculation for H 3 was carried out by Hirschfelder, Eyring 
and Rosen [3], using configuration interaction techniques with a basis of three 
ls Slater orbitals with identical orbital exponents, one on each nucleus. The 
estimated activation energy was 25 kcal/mole, the H 2 energy being obtained by the 
use of a comparable  wavefunction, i.e. constructed from two ls STO's. 
Enlargement of the 1 s Slater basis by three more 1 s STO's resulted in an activation 
energy of 14.8 kcal/mole, this calculation carried out by Boys and Shavitt I-4]. 
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The inclusions of 2p orbitals in the basis yielded 11 kcal/mole for the activation 
energy [5], this being the best CI result so far. The lowest activation energy yet 
calculated was obtained by Contoy and Bruner [6], 7.7 kcal/mole, with error 
limits estimated to be _+ 1.2 kcal/mole, using a correlated wavefunction. The 
calculated energy of H a was -1.6621 + 0.002 a.u., which, however, is not an 
upper bound to the true energy. The calculated upper bound is -1.6551 a.u. 
which results in an upper bound of 12.1 kcal/mole for the activation energy. The 
best CI calculation using a Gaussian basis has been carried out by Edmiston 
and Krauss [7], who have obtained an activation energy of 13.5 kcal/mole. 

The main obstacles encountered in variational calculations for a system as 
complex as H a are the problem of integral evaluation and the large number of 
configurations that need to be included in CI expressions, even in the case of 
moderately sized basis sets. In the work reported here the problem of integrals 
was made tractable by the use of mixed bases, containing a small number of 
Is STO's, and floating spherical Gaussian functions. Mixed bases of this type 
have already been used for H 3 successfully by Riera and Linnett I-8]. To avoid 
the lengthy CI expansions natural orbitals were used to construct the configura- 
tions, resulting in compact wavefunctions, quite easy to manage. 

It has been established by other workers that the optimum geometry is the 
linear symmetric one, hence only this geometry was considered in the present work. 

Calculations and Results 

A series of configuration interaction calculations were carried out for the 
linear, equidistant system of three interacting hydrogen atoms, in an attempt 
to obtain a good upper bound to the ground state energy, in the Born-Oppen- 
heimer approximation. The basic computational methods have been outlined 
elsewhere [9], so here only the construction of 3-electron configuration interaction 
wavefunctions and the calculation of the Hamiltonian matrix elements will be 
discussed. 

The configurations included in a given wavefunction are constructed from 
an orthonormal set of symmetry orbitals, each configuration with the symmetry 

2 + of the ground state of H a, viz. I; u . The configurations are divided into three 
types: 

�9 ~ = (iij) ~ = [i{jl ] 

~2 = (ijk)2 = 6-1/2 {_ [ijk[ + [ f i k l  - 2[ikj[}/ (1) 

qb 3 ( i jk)  3 2-*/2{[ i fk[+~Tk[}  

where [i]k] denotes a normalized Slater determinant constructed from the spin 
orbitals i , j , k ;  the bar denoting fl spin associated with orbital j, opposed to 

spin for orbitals i and k. 
The total wavefunction is hence written as 

i 
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where {Ci} is a set of coefficients which minimize the total electronic energy, the 
superscript k denoting the type of the configuration 4~. 

The matrix elements of the Hamiltonian matrix, 

Hij = ( ~  I~1 ~ ) ,  (3) 

where Jd is the Hamiltonian operator, were evaluated by a modified version of 
Kotani's method [10]. Let 

~/k = (i, i2 i3) k 
and 

1 - �9 �9 l 

~j - (ix JiJa) 

The matrix elements can then be calculated by the use of the equation 

H o = ~ ( i  1 (1) i 2 (2) i 3 (3) IJ{ '~  I Jl (1)J2 (2)js (3)) U (e)kt, 
P 

(4) 

where ~ is the permutation operator acting on the electronic coordinates and 
U(P)ki is a coefficient which arises as a result of integration over the spin 
variables. 

For each permutation U(P) is a 3 x 3 matrix corresponding to the three 
types of configurations. The 2 x 2 matrix which results if the first column and 
the first row are omitted is the spin representation matrix, as given by 
Kotani [10], for the two linearly independent spin eigenfunctions obtained by 
the Geneological (or Branching Diagram) method. The U(P) matrices are listed 
in the Appendix. 

After the calculation of the energy and the wavefunction the spinless first 
order density matrix was calculated using the following method. The density 
matrix we want is given as 

7 ( 1 1 1 , ) = 3 ~ C i C ,  f k ~* ~)i ~}  d z2  d'c3 dal daz daa , 
i,j 

(5) 

where integration is to be carried out over all coordinates except the spatial 
coordinates of electron 1. 

After integration the following equation is obtained: 

3 3 

7(111) = ~ C~ C* ~ U(P)k~ ~ i.(1)j~(1') I~ fi~j~" 
i,j P m = l  nero 

(6) 

Hence the spinless first order reduced density matrix can be expressed in the 
form 

7(ll l') = ~ ?ij qh(1) 9i (1), (7) 
l,J 

where ])ij is the sum of coefficients arising from the summations in Eq. (6). 
The matrix 7 is then diagonalized, yielding the natural orbitals and their 

occupation numbers. 
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The basis functions used in the various calculations are summarized in 
Table 1, the spatial arrangement of the Gaussians being shown in Figs. 1-3. The 
resulting energy terms are presented in Table 2. 

Our first calculation is identical to one of Shavitt's [5] H 3 calculations, the 
STO basis containing six ls type orbitals proved a very convenient starting 
point, just as in the H 2 calculations [11]. In the subsequent calculations this 
basis was enlarged by Gaussians only, keeping the internuclear separation constant 
at 1.788 a.u., this being the optimum distance in calculation Ref. [1]. 

Calculations Refs. [2, 3, and 4] employ the 6 orbital Slater basis enlarged by 
two Gaussians, both placed along the molecular axis, halfway between each pair 
of adjacent nuclei respectively (see Fig. 1). The exponent was chosen as 1.00 on the 
basis of an analogous H2 calculation [11] and the results of Riera and Linnett [8]. 
The first 8 orbital wavefunction was of the full CI type, including all possible 
configurations, totalling 83, constructed from a Schmidt orthonormalized set 
of a s- and a,-type symmetry orbitals. Once the natural orbitals were available 
the calculation was repeated using the same number of configurations, now built 
from the NO set. The natural orbitals and their occupation numbers from this 
calculation are presented in Table 3. In the next calculation Ref. [3] the CI 
expansion was shortened to include only 28 configurations, those with the 
highest coefficients from the set of 83. The resultant energy is only 0.16 kcal/ 
mole higher than the energy corresponding to the full CI wavefunction, a 
numerical illustration of the good convergence properties of natural orbitals. 
To put the 8 orbital calculations in perspective with similar calculations using 
STO bases a further calculation Ref. [4] was carried out. From the CI expansion 
all configurations of the form (au a,, a,) were omitted, leaving 75 (% a o au) types. 
The energy, -1.63415 a.u., is to be compared with the energy -1.6343 a.u., 
calculated by Gianinetti et al. [12], using a 9 orbital basis consisting of is, 2s and 
2p~ type Slater functions. The two results show the same degree of agreement 
as the analogous H2 results [11]. Consequently, significant improvement in the 
energy seemed unlikely, were the orbital exponents or the positions of the 
Gaussians allowed Co vary. Thus no attempt was made to optimize any non- 
linear parameters at this stage. 

Next the orbital basis was enlarged so as to include functions with angular 
dependence, i.e. linear combinations of off-axial Gaussians (calculations Refs. 
[5-8]). The symmetry orbitals formed from these additional Gaussians transform 
as the irreducible representations of the D4h point group. After the Schmidt 
orthogonalization of these symmetry orbitals to the a-type natural orbitals of 
calculation Ref. [2], CI wavefunctions of various lengths, which, however, 
always included the 28 basic (aaa) configurations, were constructed and used 
to calculate the energy. In calculation Ref. [5], 32 configurations were found to 
contribute significantly to the wavefunction; in calculations Refs. [6] and [7] 
this number became 43 and 62 respectively. The positions of the off-axial 
Gaussians were fixed as shown in Figs. 1-3, but their orbital exponents were 
optimized in calculations Refs. [5] and [6]. Although the orbital basis for cal- 
culations Refs. [7] and [8] consisted of 20 functions, the set of orthonormal 
molecular orbitals which were used for the construction of configurations 
contained only 16 orbitals, listed in Table 4. Tests showed that the omitted 
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T a b l e  4. T h e  o r t h o n o r m a l  m o l e c u l a r  o rb i t a l  bas is  set {qh} u sed  in the  20 o rb i t a l  H~ ca l cu l a t i ons  

~ol, (o 2 . . . .  , ~o 6 a re  iden t i ca l  to  t h e  a - t y p e  n a t u r a l  o rb i t a l s  

1, 2 . . .  6 as l is ted in T a b l e  3. 

~o v is ident ica l  to  o rb i t a l  8 f r o m  T a b l e  3. 

q~8 = 2 .18046 (G 3 - G 4 + G 7 - -  Gs) elu x (7~,~) 

q~9 = 2.18046 (Gs - G6 -l- G 9 - G 1 o) el uy (7~u) 
~Plo = 3.71273 (G 3 - G ,  - G 7 + Gs) elo x (~zgx) 
q~11 = 3.71273 (G s - G 6 - G 9 + Crto ) eio" (rco,) 

(#12 = 16.2523 (G 3 + G 4 - G 5 - G 6 + G 7 + G s - G 9 - Gio) bla (Ag) 
qh3 = 27.6738 (G 3 + G 4 - G 5 - G 6 - G 7 - G 8 + G 9 + Glo) b l ,  (zlu) 
q914 = - 8 .52780 (G 3 - G ,  + G 7 - (38) + 15.1800 (Gll  - G~2) el~ ~ (x, , )  

q h s = - 8 . 5 2 7 8 0 ( G s - G 6 + G g - G l o ) + 1 5 . 1 8 0 0 ( G 1 3 - G l , , )  el~, (r%) 
(/916 = 3.83114 ( S  A + S O - 4.19685 S B - 2.79921 (S  x + Sc, ) alo (era) 

- 2 .52582 S w - 0 .611406 (G t + G2) 

+ 1.52691 (Gtt  + G~2 + G1,) 

T a b l e  5. O c c u p a t i o n  n u m b e r s  of  the  n a t u r a l  

o rb i t a l s  f r o m  the  20 orb i ta l ,  62 c o n f i g u r a t i o n  

H3 c a l c u l a t i o n  

N a t u r a l  o rb i t a l  O c c u p a t i o n  n u m b e r  

6 ao 1.949173 
2 a ,  0 .997099 

4 a o 0 .031928 
5 a ,  0 .005044 

3 ag 0 .004892 

8 ~,x 0 .003876 

9 ~u, 0 .003876 

10 nox 0 .001386 
11 no, 0.001386 

7 a u 0 .000544 

1 a a 0.000339 

14 ~,~ 0 .000137 
15 g ~  0 .000137 

12 A o 0.1300089 
13 A,  0 .000050 

16 ag 0 .000039 

orbitals would make an extremely small contribution to the wavefunction, their 
absence, however, reduced the computer time and store requirements for the 
transformation of integrals significantly. The final calculation Ref. [8] was a full 
CI treatment, using the 16 molecular orbitals of calculation Ref. [7]. The occupa- 
tion numbers, resulting from the diagonalization of the spinless first order 
reduced density matrix calculated from the 62 configuration wavefunction, are 
given in Table 5. The configurations and their coefficients, also from calculation 
Ref. [7], are listed in Table 6. The wavefunctions resulting from any of the other 
calculations are given elsewhere [13] ~. 

The computational work was performed on the Cambridge University 
Computer Laboratory's Titan computer, details about which are given elsewhere 

1 T h e  w a v e f u n c t i o n s  a re  ava i l ab l e  f r o m  G.  B. B a c s k a y  o n  reques t .  
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Table 6. Configurations and their coefficients, arranged in decreasing order, from the 20 orbital, 
62 configuration H3 calculation 

Configuration Coefficient Configuration Coefficient 

Orbitals Type Orbitals Type 

6 6 2 1 0.980958 8 10 6 2 0.011278 
2 4 6 3 0.121686 9 11 6 2 0.011278 
4 4 2 1 -0 .073486 1 5 6 3 -0 .010954 
2 4 6 2 0.067037 2 3 6 2 -0 .009617 
2 2 5 1 0.040059 1 2 4 3 -0.009531 
8 8 2 1 -0 .038157 1 1 2 1 -0.008263 
9 9 2 1 -0 .038157 7 7 2 1 -0 .008026 
3 5 6 3 -0 .034093 10 14 6 3 -0 .007432 
3 3 2 1 -0 .031874 11 15 6 3 -0 .007432 
8 10 6 3 0.028271 4 5 6 3 0.007096 
9 11 6 3 0.028271 2 5 7 2 -0 .007028 
2 3 6 3 -0 .027147 2 2 7 1 -0 .005982 
5 5 2 1 -0 .025171 12 12 2 1 -0 .005434 
4 5 6 2 -0.024091 14 14 2 1 -0 .005234 
2 3 4 2 -0 .021463 15 15 2 1 -0 .005234 
2 3 4 3 0.014663 12 13 6 3 0.005232 

10 10 2 1 -0 .013307 8 10 4 3 0.005028 
11 11 2 1 -0 .013307 9 11 4 3 0.005028 
4 6 7 2 0.012703 3 4 5 2 0.004925 
3 5 6 2 -0 .012543 10 14 6 2 -0.004377 
4 6 7 3 0.012381 3 4 5 3 0.004345 

11 15 6 2 -0 .004377 8 14 2 3 -0 .001552 
16 16 2 1 -0.004231 9 15 2 3 -0 .001552 

1 6 7 3 -0 .004189 6 16 2 3 -0 .001534 
13 13 2 1 -0 .003135 8 10 3 3 -0 .001504 
6 6 5 1 -0 .002594 9 11 3 3 -0 .001504 
8 14 2 2 0.002385 10 10 5 1 -0 .001352 
9 15 2 2 0.002385 11 11 5 1 -0 .001352 
4 16 2 3 0.002176 8 14 5 3 -0 .001099 

12 13 6 2 -0 .001713 9 15 5 3 -0 .001099 
4 16 2 2 -0 .001668 6 16 2 2 -0.000951 

[9]. In a large calculation, the 16 orbital one for example, the integrals were 
calculated in several successive runs, the total comp. time required being 
50 rain. The number of Gaussians used to expand the Slater orbitals for the 
calculation of 1 and 2 electron integrals were 10 and 8 respectively. For  the 
same calculation transformation of the integrals needed 6 rain.; calculation of 
matrix elements between configurations for a 43 configuration wavefunction 
15 sec.; evaluation of the lowest eigenvalue of the Hamilton matrix 6 sec.; calcula- 
tion of the density matrix, natural orbitals and kinetic and nuclear attraction 
energies 9 sec. 

Discussion 

The energy, -1.63913 a.u., resulting from the 8 orbital calculation Ref. [2] 
is thought to be within 1-2 kcal/mole of the 1; limit for Ha. This belief is based 
on the results of the analogous H 2 calculation [11], i.e. the 5 orbital one, in 
which case the calculated energy was ,-~ 1.2 kcal/mole above the H2 ~ limit. 
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Similarly the SCF energy for H3, estimated by the energy of the leading term 
in the natural expansion, viz. - 1.59247 a.u., is believed to be accurate to within 
1 kcal/mole. (Here, by SCF wavefunction, we mean the best single determinan- 
tal function with one doubly filled orbital.) The best SCF energy, corresponding 
to the same definition of SCF wavefunction, quoted in the literature is 
-1.592965 a.u., calculated by Edmiston and Krauss [7], using an extensive 
Gaussian basis. By the addition of two or more Gaussians which could give rise to 
a-type symmetry orbitals it should be possible to evaluate both the SCF energy 
and the 2; limit to an accuracy better than 1 kcal/mole. 

The introduction of Gaussian lobe functions with angular dependence resulted 
in a gradual but considerable lowering of the total H 3 energy. These new 
functions have greatly improved the correlation part of the wavefunction as 
evidenced by the decrease in the electron repulsion energy and in the apparent 
correlation energy. (The latter quantity in calculations Refs. [5-8] was not 
calculated according to its strict definition, since the dominant configuration 
in the wavefunction was left unchanged from the 8 orbital calculations. 
However, the a-type orbitals constructed from off-axial Gaussians are expected 
to have only marginal effects on the energy of the dominant configuration.) The 
close agreement between the two 20 orbital calculations Refs. [7] and [8] is 
very gratifying and encouraging, giving strong numerical support for the use of 
natural orbitals. The number of configurations could probably be further 
reduced if the n and A orbitals were transformed to natural basis as well. 

The results of the 16 and 20 orbital calculations are to be compared with 
those of Shavitt et al. [5]. The differences are very small, in the case of our 
20 orbital, 169 configuration wavefunction only ~ l /4kca l /mole .  Hopefully, 
by the use of a larger number of Gaussian functions we will be able to find an 
improved variational upper bound to the H3 energy that is of "chemical 
accuracy" ( ~  1 kcal/mole). This should not be too difficult a task on the newer, 
third generation computers. 

Unfortunately, we are unable to put forward a new, definitive upper bound 
for the classical activation energy for the H/H 2 exchange reaction. The values 
quoted in Table 2 are only meant as a guide since it is very debatable whether the 
H2 energies used in the evaluation of activation energies were really resulting 
from an analogous calculation. Nevertheless, the results that were presented 
here are promising and the method of mixed basis functions may prove very 
useful in future work. 

Acknowledgements. G.B. Bacskay gratefully acknowledges the Research Scholarship from the 
Commonwealth Scientific and Research Organisation (Australia). 

Appendix 

The Matrices U(P}, Used in the Evaluation of Matrix Elements between the 
3 Electron Configurations 

3 Electrons, S = 1/2 

The three types of configurations with S = 1/2 are defined according to Eq. (1). 
For  computational reasons, in case of double occupancy the doubly occupied 
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o rb i t a l s  a re  wr i t t en  first, r e su l t i ng  in t he  f o l l o w i n g  r e p r e s e n t a t i o n  m a t r i c e s  U ( P ) :  (lo~ 
v O )  = 1 , 

U(12)  = - 1 , 

0 

U(13)  = 1/2 

H/2 

U(23)  = - 

(i ~ U(23.12)  = - 1/2 

ti ~ U(23.13)  = - 1/2 

-H/2 

1/2 

m 
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